Harvest mouse Micromys minutus of the Urals and Western Siberia: range boundaries and genetic diversity

Harvest mouse Micromys minutus of the Urals and Western Siberia: range boundaries and genetic diversity

Pilevich D.S., Yalkovskaya L.E., Sibiryakov P.A., Borodin A.V.

P. 44-52

As a result of the analysis of the cyt b complete sequences of 26 harvest mice Micromys minutus from 13 localities of the Urals and Western Siberia, the distribution boundaries and genetic diversity of the Russia phylogeographic lineage have been clarified. The distribution of the lineage in the south of the central part of Northern Eurasia from the Tyva Depression to the Southern Trans-Urals coincides with the southern boundary of the species range. The northern area of species distribution was previously considered to be limited to the taiga zone. However, our study showed that the northern boundary of the range passes through the subpolar regions of the West Siberian Plain and Cis-Urals in the zone of modern forest-tundra. Phylogeographic analysis with the inclusion of new data has confirmed the existence of four previously described phylogenetic lineages (Europe, Russia, Taiwan, Korea-Japan), the genetic diversity and demographic analysis of which have confirmed the suggestion that the modern species genetic structure and range has formed during the Late Pleistocene–Holocene period.DOI: 10.15298/rusjtheriol.22.1.05

Literature
  • Abramov A.V., Meschersky I.G. & Rozhnov V.V. 2009. On the taxonomic status of the harvest mouse Micromys minutus (Rodentia: Muridae) from Vietnam // Zootaxa. Vol.2199. P.58–68.
  • Aljanabi S.M. & Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR–based techniques // Nucleic Acids Research. Vol.25. P.4692–4693.
  • Bandelt H.-J., Forster P. & Röhl A. 1999. Median–joining networks for inferring intraspecific phylogenies // Molecular Biology and Evolution. Vol.16. P.37–48.
  • Barbosa S., Pauperio J., Searle J.B. & Alves P.C. 2013. Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: application to noninvasive sampling // Molecular Ecology Resources. Vol.13. P.43–56.
  • Bilton D.T., Mirol P.M., Mascheretti S., Fredga K., Zima J. & Searle J.B. 1998. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization // Proceedings of the Royal Society of London, B. Vol.265, P.1219–122
  • Boikov V.N. & Bolshakov V.N. 1972. [Some morphophysiological features of the harvest mouse of the forest-tundra in the Ob’ Region] // Russian Journal of Ecology. No.3. P.94–96 [in Russian].
  • Brunhoff C., Galbreath K.E., Fedorov V.B., Cook J.A. & Jaarola M. 2003. Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes // Molecular Ecology. Vol.12. P.957–968.
  • Cheriomkin I.M., Kolobaev N.N. & Javorsky V.M. 2018. [The first record Micromys minutus (Pallas, 1771) in the Norsky State Nature Reserve] // Amurian Zoological Journal. Vol.10. No.3–4. P.190–192 [in Russian, with English summary].
  • Dokuchaev N.E. 2004. The first registration of the harvest mouse Micromys minutus (Pallas) in Magadan Province, Russia // Russian Journal of Theriology. Vol.3. No.2. P.59–61.
  • Excoffier L., Laval G. & Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis // Evolutionary Bioinformatics Online. Vol.1. P.47–50.
  • Gromov I.M. & Erbaeva M.A. 1995. [Mammals of the Fauna of Russia and Adjacent Territories. Lagomorphs and Rodents]. Saint Petersburg: ZIN RAS. 520 p. [in Russian].
  • Haberl W. & Kryštufek B. 2003. Spatial distribution and population density of the harvest mouse Micromys minutus in a habitat mosaic at Lake Neusiedl, Austria // Mammalia. Vol.67. No.1. P.355–365.
  • Hall T.A. 1999. Bio-Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucleic Acids Symposium Series. Vol.41. P.95–98.
  • Hata S., Sawabe K., Natuhara Y. & Natuhara Y. 2010. A suitable embankment mowing strategy for habitat conservation of the harvest mouse // Landscape and Ecological Engineering. Vol.6. No.1. P.133–142.
  • Haynes S., Jaarola M. & Searle J.B. 2003. Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago // Molecular Ecology. Vol.12. P.951–956.
  • Kettell E.F., Perrow M.R. & Reader T. 2016. Live-trapping in the stalk zone of tall grasses as an effective way of monitoring harvest mice (Micromys minutus) // European Journal of Wildlife Research. Vol.62. P.241–245.
  • Kryštufek B., Lunde D.P., Meinig H., Aplin K., Batsaikhan N. & Henttonen H. 2019. Micromys minutus. IUCN Red List of Threatened Species. P.e.T13373A119151882.
  • Kuroe M., Ohori S., Takatsuki S. & Miyashita T. 2007. Nest-site selection by the harvest mouse Micromys minutus in seasonally changing environments // Acta Theriologica. Vol.52. No.4. P.355–360.
  • Librado P. & Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data // Bioinformatics. Vol.25. P.1451–1452.
  • Martin Y., Gerlach G., Schlötterer Ch. & Meyer A. 2000. Molecular phylogeny of European muroid rodents based on complete cytochrome b sequences // Molecular Phylogenetics and Evolution. Vol.16. P.37–47.
  • Nylander J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  • Pilevich D.S. & Kroholeva M.A. 2021. [Design of species-specific primers for amplification of the mtDNA cytochrome b gene of the harvest mouse (Micromys minutus Pallas, 1771)] // [Ecology: Facts, Hypotheses, Models. Conference of Young Scientists]. April 12–15, 2021. Yekaterinburg: Reaction. P.130–135 [in Russian].
  • Råberg L., Loman J., Hellgren O., van der Kooij J., Isaksen K. & Solheim R. 2013. The origin of Swedish and Norwegian populations of the Eurasian harvest mouse (Micromys minutus) // Acta Theriologica. Vol.58. P.101–104.
  • Ronquist F., Teslenko M., Van der Mark P., Ayres D.L., Höhna S., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Systematic Biology. Vol.61. P.539–542.
  • Sibiryakov P.A., Tovpinets N.N., Dupal T.A., Semerikov V.L., Yalkovskaya L.E. & Markova E.A. 2018. Phylogeography of the common vole Microtus arvalis, the obscurus form (Rodentia, Arvicolinae): new data on the mitochondrial DNA variability // Russian Journal of Genetics. Vol.54. P.1185–1198.
  • Suzuki H., Tsuchiya K. & Takezaki N. 2000. A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata // Journal of Molecular Phylogenetics and Evolution. Vol.15. No.1. P.15–24.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0 // Molecular Biology and Evolution. Vol.30. P.2725–2729.
  • Tiunov M.P. 2003. [New data on the distribution of small mammals in the Okhotsk region and adjacent territories] // Zoologicheskii Zhurnal. Vol.82. No.1. P.123–125 [in Russian, with English summary].
  • Tougard C., Delefosse T., Hänni C. & Montgelard C. 2001. Phylogenetic relationships of the five extant rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome b and 12S rRNA genes // Molecular Phylogenetics and Evolution. Vol.19. P.34–44.
  • Tougard C., Brunet–Lecomte P., Fabre M. & Montuire S. 2008. Evolutionary history of two allopatric Terricola species (Arvicolinae, Rodentia) from molecular, morphological, and palaeontological data // Biological Journal of the Linnean Society. Vol.93. P.309–323.