Variation and covariation of the molar crown elements in the genus Ondatra (Rodentia, Arvicolinae)

Variation and covariation of the molar crown elements in the genus Ondatra (Rodentia, Arvicolinae)

Pavlinov I.Ya.

P. 139-145

Variation and covariation of the molar crown elements of prismatic dentition in the genus Ondatra (Mammalia: Rodentia: Arvicolinae) was studied numerically by means of geometric morphometric and cluster analyses. 31 elements were identified in total, their shapes were described by semilandmarks, their covariation patterns were analyzed by cluster analysis of vectorized Procrustes distance matrices with bootstrap estimations of cluster supports. Within-tooth comparisons recognize the modules that combine crown elements corresponding to the opposing pairs of cusps characteristic of generalized cricetine dentition. Results of comparison of crown elements within each toothrow indicate that integration effect, uniting homologous elements in adjacent teeth into dispersed modules, may be stronger than that uniting opposing elements in the same teeth. Comparison of crown elements of upper and lower toothrows reveals covariation of anterior part of lower M1 and posterior part of upper M3, which underwent coherent complication in the arvicoline evolution. It is concluded that the approach, based on combination of elementaristic GM-description of dental crowns and cluster analysis of covariations of their elements, may become an important tool for exploration of integration patterns of specialized dentition in herbivorous mammals.DOI: 10.15298/rusjtheriol.21.2.04

Литература
  • Boivin M., Alvarez A. & Ercoli M.D. 2022. Integration patterns of cheek teeth and ecomorphological evolution in grinding herbivores: the case of caviine rodents (Caviomorpha: Caviidae) // Zoological Journal of the Linnean Society. P.zlac005. DOI: 10.1093/zoolinnean/zlac005.
  • Cardini A. 2019. Integration and modularity in Procrustes shape data: is there a risk of spurious results? // Evolutionary Biology. Vol.46. No.5. P.90–105.
  • Cardini A. & Marco V.A. 2022. Procrustes shape cannot be analyzed, interpreted or visualized one landmark at a time // Evolutionary Biology. Vol.49(1). P.239–254.
  • Goswami A. & Polly P.D. 2010. Methods for studying morphological integration, modularity and covariance evolution // The Paleontological Society Papers. Vol.16. No.2. P.213–243.
  • Gromov I.M. & Polyakov I.Ya. 1977. [Voles (Microtinae)]. Leningrad: Nauka. 504 p. [in Russian]
  • Hallgrímsson B., Jamniczky H., Young N.M., et al. 2009. Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation // Evolutionary Biology. Vol.36. No.4. P.355–376.
  • Hammer Ø., Harper D. & Ryan P.D. 2001. PAST. PAleontological STatistics software package for education and data analysis // Palaeontologia Electronica. Vol.4. No.1. P.1–9.
  • Klingenberg C.P. 2009. Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses // Evolution & Development. Vol.11. No.4. P.405–421.
  • Klingenberg C.P. 2014. Studying morphological integration and modularity at multiple levels: Concepts and analysis // Philosophical Transactions of the Royal Society B: Biological Sciences. Vol.369. No.1649. 20130249.
  • Klingenberg C.P. & Marugán-Lobón J. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context // Systematic Biology. Vol.62. No.4. P.591–610.
  • Labonne G., Navarro N., Laffont R., Chateau-Smith C. & Montuire S. 2014. Developmental integration in a functional unit: deciphering processes from adult dental morphology // Evolution & Development. Vol.16. No.4. P.224–232.
  • Laffont, R., Renvoisé E., Navarro N., Alibert P. & Montuire S. 2009. Morphological modularity and assessment of developmental processes within the vole dental row (Microtus arvalis, Arvicolinae, Rodentia) // Evolution & Development. Vol.11. No.3. P.302–311.
  • Lawing A.M. & Polly P.D. 2010. Geometric morphometrics: recent applications to the study of evolution and development // Journal of Zoology. Vol.280. No.1. P.1–7.
  • Mitteroecker P. & Gunz P. 2009. Advances in geometric morphometrics // Evolutionary Biology. Vol.36. No.4. P.235–247.
  • Pavlinov I.Ya. & Spasskаya N.N. 2021. Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia: Equidae): an analysis by geometric morphometrics with outline points // Russian Journal of Theriology. Vol.20. No.1. P.70–81.
  • Polly P. D., Killick L. & Ruddy M. 2011. Using left-right asymmetry to estimate non-genetic variation in vole teeth (Arvicolinae, Muridae, Rodentia) // Palaeontologia Electronica. Vol.14. No.3. P.1–12.
  • Rohlf F.J. 2017. tpsDig2 ver. 2.31. State University at Stony Brook, New York (program).
  • Rohlf F.J. 2019a. tpsUtil ver. 1.78. State University at Stony Brook, New York (program).
  • Rohlf F.J. 2019b. TPSrelw32: relative warps, version 1.7. N.Y.: State University at Stony Brook, New York (program).
  • Vorontsov N.N. 1982. [Lower Cricetids (Cricetidae) of the World Fauna]. Leningrad: Nauka. 451 p. [in Russian]