Temporal and spatial distribution of Rad51 protein in spermatocytes of the common shrew Sorex araneus L. (Soricidae, Eulipotyphla)

Temporal and spatial distribution of Rad51 protein in spermatocytes of the common shrew Sorex araneus L. (Soricidae, Eulipotyphla)

Karamysheva T.V., Belonogova N.M., Rodionova M.I., Rubtsov N.B., Polyakov A.V., Searle J.B., Borodin P.M.

P. 015-019

Chromosome pairing and recombination at meiosis involves scheduled formation and repair of double-strand breaks of DNA. Rad51, the eukaryotic homologue of the bacterial RecA protein, plays a crucial role in these processes. We used antibodies against human Rad51 to examine the temporal and spatial distribution of Rad51 in the spermatocytes of the common shrew Sorex araneus (Eulipotyphla, Soricidae). We found that hundreds of Rad51 foci appeared at leptotene. At the beginning of zygotene their close association with the axial elements of the synaptonemal complex became apparent. From early to late zygotene the number of Rad51 foci gradually decreased. At pachytene we observed a further dramatic decrease in the number of foci. They were distributed irregularly along autosomal bivalents. We detected a prevalence of Rad51 signals on the original X and autosomal arms of the sex trivalent at late pachytene. We did not detect a preferential association of Rad51 foci with unpaired or non-homologously paired regions of lateral elements of synaptonemal complexes in Robertsonian multivalents.DOI: 10.15298/rusjtheriol.6.1.04

Literature
  • Anderson L.K., Offenberg H.H., Verkuijlen W.M. & Heyting C. 1997. RecA-like proteins are components of early meiotic nodules in lily // Proceedings of the National Academy of Sciences of the USA. Vol.94. P.6868-6873.
  • Ashley T. 2002. X-autosome translocations, meiotic synapsis, chromosome evolution and speciation // Cytogenetics and Genome Research. Vol.96. P.33-39.
  • Ashley T., Plug A.W., Xu J., Solari A.J., Reddy G., Golub E.I. & Ward D.C. 1995. Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates // Chromosoma. Vol.104. P.19-28.
  • Barlow A.L., Benson F.E., West S.C. & Hultén M.A. 1997. Distribution of the Rad51 recombinase in human and mouse spermatocytes // EMBO Journal. Vol.16. P.5207-5215.
  • Bezzubova O., Shinohara A., Mueller R.G., Ogawa H. & Buerstedde J.M. 1993. A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs // Nucleic Acids Research. Vol.21. P.1577-1580.
  • Borodin P.M. 1991. Synaptonemal complexes of the common shrew Sorex araneus L. in spermatocyte spreads // Cytogenetics and Cell Genetics. Vol.56. P.61-62.
  • Fredga K. 1970. Unusual sex chromosome inheritance in mammals // Philosophical Transactions of the Royal Society of London, Series B. Vol.259. P.15-36.
  • Král B. & Radjabli S.I. 1974. Banding patterns and Robertsonian fusions in the western Siberian population of Sorex araneus (Insectivora, Soricidae) // Folia Zoologica. Vol.23. P.217-227.
  • Moens P.B., Chen D.J., Shen Z., Kolas N., Tarsounas M., Heng H.H. & Spyropoulos B. 1997. Rad51 immunocytology in rat and mouse spermatocytes and oocytes // Chromosoma. Vol.106. P.207-215.
  • Morita T., Yoshimura Y., Yamamoto A., Murata K., Mori M., Yamamoto H. & Matsushiro A. 1993. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes // Proceedings of the National Academy of Sciences of the USA. Vol.90. P.6577-6580.
  • Ochiai K., Morimatsu M., Tomizawa N. & Syuto B. 2001. Cloning and sequencing full length of canine Brca2 and Rad51 cDNA // Journal of Veterinary Medical Science. Vol.63. P.1103-1118.
  • Ohta K., Wu T.C., Lichten M. & Shibata T. 1999. Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration // Nucleic Acids Research. Vol.27. P.2175-2180.
  • Pack S.D., Borodin P.M., Serov O.L. & Searle J.B. 1993. The X-autosome translocation in the common shrew (Sorex araneus L.): late replication in female somatic cells and pairing in male meiosis // Chromosoma. Vol.102. P.355-360.
  • Padmore R., Cao L. & Kleckner N. 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae // Cell. Vol.66. P.1239-1256.
  • Peters A.H., Plug A.W., van Vugt M.J. & de Boer P. 1997. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline // Chromosome Research. Vol.5. P.66-68.
  • Plug A.W., Peters A.H., Keegan K.S., Hoekstra M.F., de Boer P. & Ashley T. 1998. Changes in protein composition of meiotic nodules during mammalian meiosis // Journal of Cell Science. Vol.111. P.413-423.
  • Plug A.W., Xu J., Reddy G., Golub E.I. & Ashley T. 1996. Presynaptic association of Rad51 protein with selected sites in meiotic chromatin // Proceedings of the National Academy of Sciences of USA. Vol.93. P.5920-5924.
  • Polyakov A.V., Volobouev V.T., Borodin P.M. & Searle J.B. 1996. Karyotypic races of the common shrew (Sorex araneus) with exceptionally large ranges: the Novosibirsk and Tomsk races of Siberia // Hereditas. Vol.125. P.109-115.
  • Schwacha A. & Kleckner N. 1995. Identification of double Holliday junctions as intermediates in meiotic recombination // Cell. Vol.83. P.783-791.
  • Searle J.B. 1986. Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus // Proceedings of the Royal Society of London, Series B. Vol.229. P.277-298.
  • Searle J.B. 1993. Chromosomal hybrid zones in eutherian mammals // Harrison R.G. (ed.). Hybrid Zones and the Evolutionary Process. New York: Oxford University Press. P.309-353.
  • Searle J.B., Fedyk S., Fredga K., Hausser J. & Volobouev V.T. 1991. Nomenclature for the chromosomes of the common shrew (Sorex araneus) // Mémoires de la Société Vaudoise des Sciences Naturelles. Vol.19. P.13-22.
  • Sharman G.B. 1956. Chromosomes of the common shrew // Nature. Vol.177. P.941-942.
  • Sharman G.B. 1991. History of discovery and recognition of XY1Y2 systems and chromosome polymorphism in mammals // Mémoires de la Société Vaudoise des Sciences Naturelles. Vol.19. P.7-12.
  • Wόjcik J.M., Borodin P.M., Fedyk S., Fredga K., Hausser J., Mishta A., Orlov V.N., Searle J.B., Volobouev V.T. & Zima J. 2003. ISACC. The list of the chromosome races of the common shrew Sorex araneus (updated 2002) // Mammalia. Vol.67. P.169-178.
  • Wu T.C. & Lichten M. 1994. Meiosis-induced double-strand break sites determined by yeast chromatin structure // Science. Vol.263. P.515-518.
  • Zima J., Lukáčová L. & Macholán M. 1998. Chromosomal evolution in shrews // Wόjcik J.M. & Wolsan M. (eds.). Evolution of Shrews. Białowieża: Mammal Research Institute, Polish Academy of Sciences. P.175-218.