A discriminating ability of haematological indicators: a comparative blood test of sympatric rodent species (Myodes glareolus, Myodes rutilus and Craseomys rufocanus)

A discriminating ability of haematological indicators: a comparative blood test of sympatric rodent species (Myodes glareolus, Myodes rutilus and Craseomys rufocanus)

Orekhova N.A., Davydova Y.A., Smirnov G.Y.

P. 24-37

Among representatives of the subfamily Microtinae (=Arvicolinae) — Myodes glareolus, Myodes rutilus and Craseomys rufocanus — an interspecies comparison was performed on haematological parameters characterising respiratory capacity of the blood, components of (non)specific immune defence and components of cellular haemostasis. C. rufocanus differs most strongly from the other two species by demonstrating higher counts of neutrophils, lymphocytes and platelets in peripheral blood and an increased number of “smaller” erythrocytes with high density of haemoglobin within the cell. The results are discussed in conjunction with the information available in the literature on basal metabolic rate of the species, their sociability and eurybionism, features of thermoregulation and phylogenetic relationships. The authors come to the conclusion that correct interspecific comparisons are possible only within the same reproductive-age groups (either immature under-yearlings or breeding voles that overwintered).DOI: 10.15298/rusjtheriol.21.1.03

Literature
  • Abramson N.I. & Lissovsky A.A. 2012. [Subfamily Arvicolinae] // Pavlinov I. & Lissovsky A.A. (eds.). The Mammals of Russia: A Taxonomic and Geographic Reference. Archives of Zoological Museum of MSU. Vol.52. Moscow: KMK Scientific Press. P.127–141. [in Russian].
  • Abramson N.I., Lebedev V.S., Tesakov A.S., & Banikova A.A. 2009. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): an unexpected result of nuclear gene analysis // Molecular biology. Vol.43. No.5. P.34–846.
  • Aliko V. & Gumeni D. 2004. Evolution of hematological parameters of peripheric blood obtained from representative individuals of Amphibia, Aves and Mammalia classes // Biological Studies. Vol.8. P.112-118.
  • Bashenina V. 1977. [Ways of adaptation of murine rodents]. Moskow: Nauka. 355 p. [in Russian].
  • Berdyugin K.I. 1996. [Small mammals in the upper belts of the Ural Mountains]. Abstract of PhD Dissertation. Yekaterinburg: IPAE UB RAS. 14 p. [in Russian].
  • Blaxter K. 1989. Energy metabolism in animals and man. New York: Cambridge University Press. 336 p.
  • Borodin A.V., Davydova Yu.A., & Fominykh M.A. 2011. [A natural hybrid between the red (Clethrionomys rutilus) and the bank (Clethrionomys glareolus) vole (Arvicolinae, Rodentia) in the Middle Urals] // Zoologichesky zhurnal. Vol.90. No.5. P.634–640. [in Russian, with English summary].
  • Bottaeva Z.Kh., Tembotova F.A., Emkuzheva M.M, Bersekova Z.A. & Chapaev A.K. 2019. Effect of ecogeographic factors along latitudinal-longitudinal gradient on the red blood system of the Caucasian snow vole (Chionomys gud), a species autochthonous to the Caucasus // Russian Journal of Ecology. Vol.50. No.1. P.34–42.
  • Chernyavsky F.B., Lazutkin A.N. & Mosin A.F. 2003. Variations of some physiological and biochemical indices in the population of the red-backed vole (Clethrionomys rutilus) // Biology Bulletin. Vol.3. No.30. P.291–298.
  • Dekonenko A., Yakimenko V., Ivanov A., Morozov V., Nikitin P., Khasanova S., Dzagurova T., Tkachenko E. & Schmaljohn C. 2003. Genetic similarity of Puumala viruses found in Finland and western Siberia and of the mitochondrial DNA of their rodent hosts suggests a common evolutionary origin // Infection, Genetics and Evolution. Vol.3. No.4. P.245–247.
  • Dittmann M.T., Hebel C., Arif A., Kreuzer M. & Clauss M. 2015. Metabolic rates of three gazelle species (Nanger soemmerringii, Gazella gazella, Gazella spekei) adapted to arid habitats // Mammalian Biology. Vol.80. No.5. P.390–394.
  • Ernster L. & Schatz G. 1981. Mitochondria: a historical review // Journal of Cell Biology. Vol.91. No.3. P.227s–255s.
  • Feore S.M., Bennett M., Chantrey J , Jones T, Baxby D & Begon M 1997. The effect of cowpox virus infection on fecundity in bank voles and wood mice // Proceedings of the Royal Society of London. Series B. Vol.264. No.1387. P.1457–1461.
  • Frase B.A. 2002. Hematological parameters of high-elevation bushy-tailed woodrats // The Southwestern Naturalist. Vol.47. No.3. P.508–510.
  • Grigorovich N.A. 1966. Pathogenesis of hemolytic anemia caused by phenylhydrazine (experimental data) // Bulletin of Experimental Biology and Medicine Vol.61. No.2. P.29–32.
  • Hansson L. 1985. Clethrionomys food: generic, specific and regional characteristic // Annales Zoologici Fennici. Vol.22. No.3. P.315–318.
  • Hoehn R.S., Jernigan P.L., Chang A.L., Edwards M.J. & Pritts T.A. 2015. Molecular mechanisms of erythrocyte aging // Biological Chemistry. Vol.396. No.6–7. P.621–631. Hoffman R., Benz E.J., Shattil S.J., Furie B., Cohen H.J., Silberstein L.E. & McGlave P. 1999. Hematology: basic principles and practice. New York: Churchill Livingstone. 2584 p.
  • Hochachka P.W. & Somero G.N. 1980. Biochemical adaptation. Princeton: Princeton University Press. 563 p.
  • Jain N.C. 1986. Schalm’s veterinary haematology 4th edition. Philadelphia: Lea and Febiger. 1221 p.
  • Ims R.A. 1989. Kinship and origin effects on dispersal and space sharing in Clethrionomys rufocanus. // Ecology. Vol.70. No.3. P.607–616.
  • Kizhina A.G., Kalinina S.N., Uzenbaeva L.B., Panchenko D.V., Łapiński S., Ilyukha V.A., Pechorina E.F. & Fokina V.O. 2020. Comparative study of erythrocyte morphology and size in relation to ecophysiological adaptations in Rodentia species. // Russian Journal of Theriology. Vol.19. No.2. P.161–171.
  • Konig & Claus. 1973. Mammals. London: Collins & Co. 256 p.
  • Koteja P. & Weiner J. 1993. Mice, voles and hamsters: metabolic rates and adaptive strategies in muroid rodents. // Oikos. Vol.66. No.3. P.505–514.
  • Kostelecka-Myrcha A. 1973. Regularities of variations of the haematological values characterizing the respiratory function of blood in mammals. // Acta Theriologica. Vol.18. No.1. P.1–56.
  • Kostelecka-Myrcha A. 2002. The ratio of amount of haemoglobin to total surface area of erythrocytes in mammals. // Acta Theriologica. Vol.47. No.1. P.209–220.
  • Kovalchuk L.A. & Tsvirenko S.V. 1997. Energetic metabolism and the blood system of small mammals living under different climatic and geographical conditions // Russian Journal of Ecology. Vol.28. No.1. P.51–56.
  • Kovalchuk L.A. & Yastrebov A.P. 2003. [Ecological Physiology of Small Mammals in the Urals] Ekaterinburg: Izdatel’stvo NISO. 184 p. [in Russian, with English summary].
  • Kravchenko L.B. & Moskvitina N.S. 2008. Behavioral and physiological peculiarities of three species of forest voles (Clethrionomys, Rodentia, Cricetidae) related to their spatial population structure // Zoologichesky zhurnal. Vol.87. No.2. P.1509–1517 [in Russian, with English summary].
  • Kshnyasev I.A. & Davydova Yu.A. 2021. Population cycles and the Chitty syndrome // Russian Journal of Ecology. Vol.52. No.1. P.70–75.
  • Kusumoto К. & Saitoh T. 2008. Effects of cold stress on immune function in the grey-sided vole, Clethrionomys rufocanus . // Mammal Study. Vol.33. P.11–18.
  • Kusumoto K. 2015. Humoral immune response of overwintered gray red-backed voles (Myodes rufocanus bedfordiae) under cold stress in spring. // Bulletin of the Faculty of Agriculture, Saga University. Vol.100. P.15–26.
  • Lazutkin A.N., Yamborko A.V. & Kiselev S.V. 2016. Energy and immune parameters of northern red-backed voles (Clethrionomys rutilus) at different population densities in the Kolyma river basin // Russian Journal of Ecology. Vol.47. No.6. P.562–567.
  • Litman G.W., Cannon J.P. & Dishaw L.J. 2005. Reconstructing immune phylogeny: new perspectives // Nature Reviews Immunology. Vol.5. No.11. P.866–879.
  • Lokhmiller R.L. & Deerenberg C. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? // Oikos. Vol.88. No.1. P.87–98.
  • Lokhmiller R.L. & Moshkin M.P. 1999. [The adaptive significance of the variability of immunocompetence in population of small mammals] // Sibirskiy ekologicheskiy zhurnal. Vol.6. No.1. P.37–58. [in Russian, with English summary].
  • Lydyard P.M. & Porakishvili N. 2012. Cells, tissues and organs of the immune system // Male D., Brostoff J., Roth D.B. & Roitt I.M. (eds.) Immunology (8th edition). Elsevier. P.17–50.
  • Lovegrove B.G. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum // Journal of Comparative Physiology. Part B. Vol.173. No.2. P.87–112.
  • Maloiy G.M.O., Kamau J.M.Z., Shkolnik A., Meir M., Arieli R. 1982. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda) (Mammalia) // Journal of Zoology. Vol.198. No.3. P.279–291.
  • Mather P.M. 1987. Computer processing of remotely sensed images, an introduction. Chichester: John Wiley and Sons. 360 p.
  • McArdle W.D., Katch F.I. & Katch V.L. 2009. Exercise physiology: nutrition, energy, and human performance. 7th edition. Philadelphia: Lippincott Williams and Wilkins. 1038 p.
  • McDevitt R.M. & Speakman J.R. 1994. Central limits to sustainable metabolic rate have no role in cold acclimation of the short-tailed field vole (Microtus agrestis) // Physiological Zoology. Vol.67. No.5. P.1117–1139.
  • McNab B.K. 1979. Climatic adaptation in the energetics of heteromyid rodents // Comparative Biochemistry and Physiology Part A. Vol.62. No.4. P.813–820.
  • McNab B.K. 1992. A statistical analysis of mammalian rates of metabolism // Functional Ecology. Vol.6. No.6. P.672–679. McNab B.K. 2008. An analysis of the factors that influence the level and scaling of mammalian BMR // Comparative Biochemistry and Physiology. Part A. Vol.151. No.1. P.5–28.
  • Morrison P.R. & Tietz W.J. 1957. Cooling and thermal conductivity in three small Alaskan mammals // Journal of Mammalogy. Vol.38. No.1. P.78–86.
  • Morrison P.R. 1964. Adaptation of small mammals to the arctic // Federation proceedings. Vol.23. No.6. P.1202–1206.
  • Olenev G.V. 2002. Alternative types of ontogeny in cyclomorphic rodents and their role in population dynamics: an ecological analysis // Russian Journal of Ecology. Vol.33. P.321–330.
  • Orekhova N.A. 2018. Hematological indicators in pygmy wood mouse Apodemus uralensis (Muridae, Rodentia) populations as markers of the environmental radiation exposure: East Urals radioactive trace (Russia) // Environmental Science and Pollution Research. Vol.25. P.16144–16166.
  • Osipova O.V. & Soktin A.A. 2008. [Experimental simulation of ancient hybridization between bank and red voles] // Doklady Akademii Nauk. Vol.420. No.1. P.169–171. [in Russian, with English summary]
  • Potapov S.G., Illarionova N.A., Andreeva T.A., Baskevich M.I., Okulova N.M., Lavrenchenko L.A., Orlov V.N. 2007. [Transfer of mitochondrial genome of the northern redbacked vole (Clethrionomys rutilus) to the bank vole (C. glareolus) in northwestern Europe] // Doklady Akademii Nauk. Vol.417. No.1. P.435–438. [in Russian, with English summary]
  • Rausch R.L. & Rausch V.R. 1975. Relationships of the red- backed vole, Clethrionomys rutilus (Pallas), in North America: karyotypes of the subspecies Dawsoni and Albiventer // Systematic Biology. Vol.24. No.2. P.163–170.
  • Rutovskaya M.V. 1992. [Factors affecting the sound activity of forest voles)] // Izvestiya of the Academy of Sciences of the Union of Soviet Socialist Republics. Vol.5. P.753–760 [in Russian].
  • Saino N., Canova L., Fasola M. & Martinelli R. 2000. Reproduction and population density affect humoral immunity in bank voles under field experimental conditions // Oecologia. Vol.124. P.358–366.
  • Sheldon B.C. & Verhulst S. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology // Trends in Ecology and Evolution. Vol.11. No.8. P.317–321.
  • Smirnov N.G., Bolshakov V.N. & Borodin A.V. 1986. [Pleistocene rodents of the north of western Siberia]. Moscow: Nauka. 145 p. [in Russian].
  • Snyder G.K. 1973. Erythrocyte evolution: the significance of the Fåhraeus-Lindqvist phenomenon // Respiratory Physiology. Vol.19. No.3. P.271–278.
  • Snyder G.K. & Sheafor B.A. 1999. Red blood cells: centerpiece in the evolution of the vertebrate circulatory system // Integrative and Comparative Biology. Vol.39. No.2. P.189–198.
  • Sokolov V.E. & Syroechkovsky E.E. (eds). 1988. [Reserves of the European part of the RSFSR. Part I.]. Moskow: Mysl’ Part. I. P.61–89. [in Russian].
  • Speakman J.R., Ergon T., Cavanagh R., Reid K., Scantle- bury D.M. & Lambin X. 2003. Resting and daily energy ex- penditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects // PNAS of the United States of America. Vol.100. No.24. P.14057–14062.
  • StatSoft Inc. 2012. Electronic Textbook on Statistics. Available from http://www.statsoft.ru/home/textbook/default.htm
  • Tarakhtii E.A. & Mukhacheva S.V. 2011. Blood system peculiarities in the bank vole (Clethrionomys glareolus) under chronic environmental pollution // Biological Bulletin. Vol.38. No.5. P.518–527.
  • Tarakhtii E.A., Sumin M.N. & Davydova Yu.A. 2009. [Variability of red blood characteristics in bank vole (Clethrionomys glareolus) related to season and reproductive status of its individuals] // Uspekhi sovremennoy biologii. Vol.129. No.2. P.191–197 [in Russian, with English summary]
  • Tesakov A.S. 1996. Evolution of bank voles in the late Pliocene and early Pleistocene of eastern Europe (Clethrionomys, Arvicolidae) // Acta Zoologica Cracoviensia. Vol.39. No.1. P.541–547.
  • Tête N., Afonso E., Bouguerra G. & Scheifler R. 2015. Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient // Chemosphere. Vol.138. P.940–946.
  • Thomas A. & Ono K. 2015. Diving related changes in the blood oxygen stores of rehabilitating harbor seal pups (Phoca vitulina)// PloS ONE. Vol.10. No.6. P.e0128930.
  • Topashka-Ancheva M., Metcheva R. & Teodorova S. 2003. A comparative analysis of the heavy metal loading of small mammals in different regions of Bulgaria II: chromosomal aberrations and blood pathology // Ecotoxicology and Environmental Safety. Vol.54. No.2. P.188–193.
  • Wartha F. & Henriques-Normark B. 2008. ETosis: a novel cell death pathway // Science Signaling. Vol.1. No.21. P.25.
  • White J.G. & Clawson C.C. 1980. Overview article: Biostructure of blood platelets // Ultrastructural Pathology. Vol.1. No.4. P.533–558.
  • Wiger R. 1979. Seasonal and annual variations in the prevalence of blood parasites in cyclic species of small rodents in Norway with special reference to Clethrionomys glareolus // Ecography. Vol.2. No.3. P.169–175.
  • Wilson D.E., Reeder D.M. (eds.). 2005. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd edition. Baltimore: Johns Hopkins University Press. 2142 p.
  • Wołk E. 1981. Seasonal and age changes in leukocyte indices in shrews // Acta Theriologica. Vol.26. No.12. P.219–229.