Development and characterization of new polymorphic microsatellite markers for Eurasian ground squirrel Spermophilus fulvus (Lichtenstein, 1823)

Development and characterization of new polymorphic microsatellite markers for Eurasian ground squirrel Spermophilus fulvus (Lichtenstein, 1823)

Titov S.V., Batova O.N., Vasilieva N.A., Savinetskaya L.E., Tchabovsky A.V.

P. 131-135

Ground squirrels are ecosystem engineers and keystone species in many open landscapes of Eurasia, America, and Africa. They are model objects for population studies, behavioural ecology, life-history theory, and conservation biology, the research areas where microsatellite analysis is widely applied and fruitful. So far, microsatellite markers have been developed for only few Palearctic ground squirrels. We tested and characterized 14 markers previously developed for ground squirrels and 10 new loci with tri-, tetra-, and five-nucleotide repeats in the yellow ground squirrel, Spermophilus fulvus, a species widely distributed in Eurasia and endangered in some regions. We found polymorphism in 10 loci, five of them were highly polymorphic (5–14 alleles). These markers will benefit studies of the population genetic structure, parentage, mating system, reproductive success, and interspecific hybridization as well as conservation efforts in S. fulvus and other close-related Eurasian ground squirrels.DOI: 10.15298/rusjtheriol.19.2.03

Literature
  • Barthe S., Gugerli F., Barkley N.A., Maggia L., Cardi C. & Scotti I. 2012. Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences // PLoS ONE. No.7. P.e40699.
  • Bell K.C. & Matocq M.D. 2010. Development and characterization of polymorphic microsatellite loci in the Mohave ground squirrel (Xerospermophilus mohavensis) // Conservation Genetics Resources. Vol.2. No.1. P.197–199.
  • Estoup A., Jarne P. & Cornuet J.-M. 2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis // Molecular Ecology. No.11. P.591–1604.
  • Gondek A., Verduijn M. & Wolff K. 2006. Polymorphic microsatellite markers for endangered spotted suslik, Spermophilus suslicus // Molecular Ecology Notes. Vol.6. No.2. P.359–361.
  • Hanslik S. & Kruckenhauser L. 2000. Microsatellite loci for two European sciurid species (Marmota marmota, Spermophilus citellus) // Molecular Ecology. Vol.9. No.9. P.2163–2165.
  • Jones R.T., Martin A.P., Mitchell A.J., Collinge S.K. & Ray C. 2005. Characterization of 14 polymorphic microsatellite markers for the black-tailed prairie dog (Cynomys ludovicianus) // Molecular Ecology Notes. Vol.5. No.1. P.71–73.
  • Kucheruk V.V. 1998. [Present views of Citellus fulvus range] // Zoologicheskii Zhurnal. Vol.77. P.1205–1207 [in Russian].
  • May B., Gavin T.A., Sherman P.W. & Korves T.M. 1997. Characterization of microsatellite loci in the Northern Idaho ground squirrel Spermophilus brunneus brunneus // Molecular Ecology. Vol.6. No.4. P.399–400.
  • Oparin M.L., Oparina O.S. & Tsvetkova A.A. 2004. Pasture as a factor of transformations of ground ecosystems in semiarid regions // Povolzhskii Ecologicheskii Zhurnal. No.2. P.183–199 [in Russian, with English summary].
  • Raymond M. & Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism // Journal of Heredity. Vol.86. P.248–249.
  • Rousset F. 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux // Molecular Ecology Resources. No.8. P.103–106.
  • Selkoe K.A. & Toonen R. J. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers // Ecology Letters. Vol.9. No.5. P.615–629.
  • Shilova S.A., Savinetskaya L.E. & Tchabovsky A.V. 2015. Long-term and recent dynamics of the yellow souslik (Spermophilus fulvus, Rodentia, Sciuridae) population from Yeruslan sands of Transvolga region // Zoologicheskii Zhurnal. Vol.94. No.8. P.944–954 [in Russian, with English summary].
  • Thorington Jr. R.W., Koprowski J.L., Steele M.A. & Whatton J.F. 2012. Squirrels of the World. Baltimore: Johns Hopkins University Press. 472 p.
  • Titov S.V., Ermakov O.A., Shmyrov A.A., Kuzmin A.A., Surin V.L. & Formozov N.A. 2006. Population features of interspecial hybridization of ground squirrels (Spermophilus: Rodentia, Sciuridae) // Bulleten’ Moscovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii. Vol.111. P.36–41 [in Russian, with English summary].
  • Titov S.V., Shmyrov A.A., Kuzmin A.A., Ermakov O.A., Surin V.L. & Formozov N.A. 2007. [Patterns of dynamics of genetic structure of hybrid populations of mammals (with gen. Spermophilus as a model)] // Rozhnov V.V. (ed.).
  • Titov S.V., Shmyrov A.A., Kuzmin A.A., Ermakov O.A., Surin V.L. & Formozov N.A. 2007. [Patterns of dynamics of genetic structure of hybrid populations of mammals (with gen. Spermophilus as a model)] // Rozhnov V.V. (ed.). Molekularno-geneticheskiye Osnovy Sohraneniya Bioraznoobraziya Mlekopitayushchih Golarktiki: Materialy mezhdunarodnoi konferencii. Мoskva: KMK Scientific Press Ltd. P.258–269 [in Russian].
  • Titov S.V., Savinetskaya L.E. & Tchabovsky A.V. 2009. High genetic diversity in the long-tailed ground squirrel (Spermophilus undulatus) population on Olkhon Island: A natural gene bank or the consequences of long-term isolation? // Doklady Biological Sciences. Vol.429. No.1. P.523–535.
  • Van Oosterhout C., Hutchinson W.F., Wills D.P.M. & Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Molecular Ecology Notes. No.4. P.535–538.
  • Vasilieva N.A. & Tchabovsky A.V. 2015. A shortage of males causes female reproductive failure in yellow ground squirrels // Science Advances. Vol.1. No.9. P.e1500401.
  • Vasilieva N.A. & Tchabovsky A.V. 2018. Reproductive decisions in a “fast-living” sciurid: a case study of the yellow ground squirrel (Spermophilus fulvus) // Biology Bulletin Reviews. Vol.8. No.1. P.12–22.