Latitude- and climate-associated patterns in small mammal fauna changes of the West Yakutia

Latitude- and climate-associated patterns in small mammal fauna changes of the West Yakutia

Volpert Y.L., Shadrina E.G.

P. 99-106

Distribution of small mammals has been analyzed on the territory of the Western Yakutia in the corridor between 112° and 116° E and between the Lena River valley (starting from the Vitim River mouth) and the Anabar and Olenyok interriverine area (59–71° N). The material was collected in 2002–2017 in 11 sites within the taiga zone (from the border between the middle and south taiga to the northern border of the north taiga subzone). A total of 11200 cone-days and 12500 trap-days were accumulated and 4200 specimens of small mammals belonging to 21 species were collected. The highest species richness of small mammals is registered on the border of the south and middle taiga (17–18 species). In the north taiga the fauna of small mammals is represented by 8–9 species. This decrease from south to north is uneven: in the river valleys the species richness is generally higher than in the watersheds. The penetration of taiga species to the north is of a larger scale than that of tundra species into taiga habitats; therefore, changes in beta-diversity occur mainly due to the distribution limits of boreal species. Besides, in the absence of geographic barriers, a sharp decline in species richness is observed between 65° and 66° N, which coincides with the boundary between the middle-taiga and north-taiga subzones. Out of the climatic factors, the distribution of small mammals is affected mainly by winter precipitation, winter duration, average July temperature and average annual temperature, while dependence on such factors as January temperature and summer precipitation was not found.DOI: 10.15298/rusjtheriol.18.2.04

Литература
  • Andrews P.& O’Brien E.M. 2000. Climate, vegetation, and predictable gradients in mammal species richness in southern Africa // Journal of Zoology. Vol.251. P.205–231. Brodie J.F. 2019. Environmental limits to mammal diversity vary with latitude and global temperature // Ecology Letters. Vol.22. No.3. P.480–485.
  • Buckley L.B., Davies T.J., Ackerly D.D., Kraft N.J.B., Harrison S.P., Anacker B.L., Cornell H.V., Damschen E.I., Grytnes J.-A., Hawkins B.A., McCain C.M., Stephens P.R. & Wiens J.J. 2010. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals // Proceedings of the Royal Society, B. Vol.277. P.2131–2138.
  • Fergnani P.N. & Ruggiero A. 2015. Ecological diversity in South American mammals: their geographical distribution shows variable associations with phylogenetic diversity and does not follow the latitudinal richness gradient // PLoS ONE. Vol.10. e0128264.
  • Fergnani P.N. & Ruggiero A. 2017. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics // PLoS ONE. Vol.12 (9). e0184057.
  • Fraser D., Hassall C., Gorelick R. & Rybczynski N. 2014. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America // PLoS ONE. Vol.9 (9). e106499.
  • Karaseva E.V. & Telitsyna A.Yu. 1995. [Methods of studying rodents in the field]. Moscow: Nauka. 226 p. [In Russian].
  • Kerr J. & Packer L. 1998. The impact of climate change on mammal diversity in Canada // Environmental Monitoring and Assessment. Vol.49. P.263–270.
  • Krivosheev V.G. 1973. [Zoogeographical description of the mammalian fauna of Yakutia] // Yudin B.S. (ed.). Fauna Sibiri. Novosibirsk: Nauka. P.338–371 [in Russian].
  • Kucheruk V.V. 1963. [New methods of census taking of rodent pests and shrews] // Formozov A.N. & Isakov Yu.A. (eds.). Organizatsiya i metody ucheta ptits i vrednykh gryzunov. Moscow: Izdatelstvo Akademii nauk SSSR. P.159–183 [in Russian].
  • Kullberg P.& Moilanen A. 2014. How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network? // Natureza & Conservação. Brazilian Journal of Nature Conservation. Vol.12. No.1. P.3–10.
  • Lamanna C., Blonder B., Violle C., Kraft N.J.B., Sandel B., Šímová I., Donoghue II C.B., Svenning J-C., McGill B.J., Boyle B., Buzzard V., Dolins S., Jørgensen P.M., Marcuse-Kubitza A., Morueta-Holme N., Peet R.K., Piel W.H., Regetz J., Schildhauer M., Spencer N., Thiers B., Wiser S.K. & Enquist B.J. 2014. Functional trait space and the latitudinal diversity gradient // Proceedings of the National Academy of Sciences of the USA. Vol.111. P.13745–13750.
  • Litvinov Yu.N. 1987. [The population of small mammals at the northern boundary of their range in Taimyr] // Yudin B.S. (ed.). Fauna, taksonomiya, ekologiya mlekopitayushchikh i ptits. Novosibirsk: Nauka. P.11–16 [in Russian].
  • Mordosov I.I. 1997. [Mammals of the Western Yakutia]. Yakutsk: Knizhnoe Izdatel’stvo. 235 p. [In Russian].
  • Mordosov I.I. 2014. [Development and the current distribution of the mammalian fauna of Yakutia] // Vestnik SVFU. Vol.11. No.5. P.31–41 [in Russian].
  • Mordosov I.I. & Vinokurov V.N. 1980. [Faunistic complexes of mammals in the taiga regions of the West Yakutia] // Mordosov I.I. (ed.). Fauna i ekologiya nazemnykh pozvonochnykh taezhnoi Yakutii. Yakutsk: Izdatel’stvo Yakutskogo Gosudarstvennogo Universiteta. P.57–65 [in Russian]. Moreno-Rueda G. & Pizarro M. 2009. Relative influence of habitat heterogeneity, climate, human disturbance, and spatial structure on vertebrate species richness in Spain // Ecological Research. Vol.24. No.2. P.335–344.
  • Murphy D.D. & Weiss S.B. 1992. Effects of climate change on biological diversity in Western North America: Species losses and mechanisms // Peters R.L. & Lovejoy T.E. (eds.). Global Warming and biological diversity. New Haven: Yale University Press. P.355–368.
  • Obolenskaya E.V. & Lissovsky A.A. 2015. Regional zoogeographical zoning using species distribution modelling by the example of small mammals of South-Eastern Transbaikalia // Russian Journal of Theriology. Vol.14. No.2. P.171–185.
  • Odum E.P. 1983. Basic ecology. Philadelphia: Saunders College Pub. 613 p.
  • Oliveira B.F., Machac A., Costa G.C., Brooks T.M., Davidson A.D., Rondinini C. & Graham C.H. 2016. Species and functional diversity accumulate differently in mammals // Global Ecology and Biogeography. Vol.25. No.9. P.1119–1130.
  • Pereira H.M., Leadley P.W., Proença V. et al. 2010. Scenarios for global biodiversity in the 21st century // Science. Vol.30. No.6010. P.1496–1501.
  • Pianka E.R. 1966. Latitudinal gradients in species diversity: a review of concepts // American Naturalist. Vol.100. P.33–46.
  • Pianka E.R. 1978. Evolutionary ecology. New York: Harper and Row Publishers. 397 p.
  • Qian H., Badgley C. & Fox D.L. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America // Global Ecology and Biogeography. Vol.18. No.1. P.111–122.
  • Revin Yu.V. & Germogenov N.I. 1979. [The population of terrestrial vertebrates and its possible changes in vicinity of the reservoir of the Vilyuy hydropower plant III] // Popov M.V., Kirillov F.N. & Vozin V.F. (eds.). Okhrana i ratsional’noe ispol’zovanie zhivotnogo mira i prirodnoi sredy Yakutii. Materialy VII Respublikanskogo soveshchaniya po okhrane prirody Yakutii. Yakutsk: Yakutskoe Knizhnoe Izdatel’stvo. P.32–39 [in Russian].
  • Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause // Oikos. Vol.65. P.514–527.
  • Sapogov A.V. 1983. [Zonal specifics of the population of mouse-like rodents of the Yenisei taiga] // Syroechkovskii V.E. (ed.). Zhivotnyi mir eniseiskoi taigi i lesotundry. Moscow: Nauka. P.204–215. [In Russian].
  • Schemske D.W. & Mittelbach G.G. 2017. “Latitudinal gradients in species diversity”: Reflections on Pianka’s 1966 article and a look forward // American Naturalist. Vol.189. P.599–603.
  • Shadrina E.G. 2004. [New data about dispersal of the Siberian mole Talpa (Asiascalops) altaica on the east-north of it’s areal] // Zoologicheskii Zhurnal. Vol.83. No.4. P.508–509 [in Russian, with English summary].
  • Shchipanov N.A., Kouptsov A.V., Kalinin A.A., Demidova T.B., Lyapina M.G., Aleksandrov D.Y., Raspopova A.A., Pavlova S.V., Tumasyan P.A. & Oleinichenko V.Y. 2010. Small mammals of the southeast Tver Oblast. Communication 1. The fauna and biotopic distribution // Contemporary Problems of Ecology. Vol.3. No.5. P.587–592.
  • Sheftel B.I. 1983. [Zonal specifics of the population of insectivorous mammals of the Yenisei taiga and forest-tundra] // Syroechkovskii V.E. (ed.). Zhivotnyi mir eniseiskoi taigi i lesotundry. Moscow: Nauka. P.184–203 [in Russian].
  • Tavrovskij V.A., Egorov O.V., Krivosheev V.G., Popov M.V. & Labutin Yu.V. 1971. [Mammals of Yakutia]. Moscow: Nauka. 660 p. [In Russian].
  • Urban M.C. 2015. Accelerating extinction risk from climate change // Science. Vol.348. No.6234. P.571–573.
  • Volpert Ya.L. & Danilov V.A. 2017. [Population of small mammals of the Anabar and Olenyok interriverine area] // Vestnik Irkutskoi Gosudarstvennoi Sel’skokhozyaistvennoi Akademii. Vol.83. P.17–24 [in Russian].
  • Volpert Ya.L. & Shadrina E.G. 2002. [Small mammals of the North-East Siberia]. Novosibirsk: Nauka. 246 p. [In Russian].
  • Volpert Ya.L. & Yudin B.S. 1986. [Spatial changes in faunistic complexes of small mammals of Yakutia] // Yudin B.S. (ed.). Okhotnichie-promyslovye resursy Sibiri. Novosibirsk: Nauka. P.198–202 [in Russian].
  • Willig M.R. & Presley S.J. 2018. Latitudinal gradients of biodiversity: theory and empirical patterns // Della Sala D.A. & Goldstein M.I. (eds.) The Encyclopedia of the Anthropocene. Oxford: Elsevier. Vol.3. P.13–19.
  • Willig M.R., Kaufman D.M. & Stevens R.D. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis // Annual Review of Ecology Evolution and Systematics. Vol.20. No.34. P.273–309.
  • Brodie J.F. 2019. Environmental limits to mammal diversity vary with latitude and global temperature // Ecology Letters. Vol.22. No.3. P.480–485.