Little genetic divergence of the greater horseshoe bat Rhinolophus ferrumequinum from far-eastern Asia, with a preliminary report on genetic differentiation of R. ferrumequinum from Eurasia and northern Africa examined from cytochrome b sequences

Little genetic divergence of the greater horseshoe bat Rhinolophus ferrumequinum from far-eastern Asia, with a preliminary report on genetic differentiation of R. ferrumequinum from Eurasia and northern Africa examined from cytochrome b sequences

Koh H.S., Jo J.E., Oh J.G., Kweon G.H., Ahn N.H., Sin W.H., Sin D.S.

P. 97-103

We obtained cytochrome b complete sequences (1140 bp) of the greater horseshoe bat Rhinolophus ferrumequinum from Korea (Jeju Island and mainland Korea), and these sequences were compared to corresponding sequences of R. ferrumequinum, obtained from GenBank, in order to examine genetic divergence among populations within R. ferrumequinum from far-eastern Asia and other parts of the range. Specimens from four populations in far-eastern Asia (Jeju, mainland Korea, northeastern China, and Japan) formed a far-eastern clade and were little differentiated, indicating that our results support a former subspecies classification, recognized R. f. korai and R. f. quelpartis as synonyms of R. f. nippon. In addition, we found that the eastern China clade from Henan is genetically distinct from the far-eastern clade, although individuals from Japan, northeastern China, and eastern China are known as R. f. nippon, and we propose further analyses with additional specimens from China to examine whether or not the eastern China clade is a subpopulation within R. f. nippon. On the other hand, R. ferrumequinum from Eurasia and northern Africa was found to be composed of four clades (far-eastern Asia, eastern China, central China, and western Asia – Europe – northern Africa), and average nucleotide distances between the first and other three clades were 2.15%, 4.10%, and 5.37% respectively. Thus, we found that genetic distances between these clades are correlated with geographic distances between them, and we concluded that further analysis of cytochrome b and other markers from additional specimens of R. ferrumequinum across distributional range is necessary to reexamine its population structure and subspecies classification.DOI: 10.15298/rusjtheriol.13.2.05

Литература
  • Benda P. & Vallo P. 2012. New look on the geographical variation in Rhinolophus clivosus with description of a new horseshoe bat species from Cyrenaica, Libya // Vespertilio. Vol.16. P.69-96.
  • Corbet G.B. 1978. The Mammals of the Palaearctic Region. London: British Museum, Cornell University Press. 314 p.
  • Dillon R.T. 1984. Geographic distance, environmental difference, and divergence between isolated populations // Systematic Zoology. Vol.33. P.69-82.
  • Flanders J., Jones G., Benda P., Dietz C., Zhang S., Li G., Sharifi M. & Rossiter S.J. 2009. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data // Molecular Ecology. Vol.18. P.306-318.
  • Flanders J., Li W., Rossiter S.J. & Zhang S. 2011. Identifying the effect of the Pleistocene on the greater horseshoe bat, Rhinolophus ferrumequinum, in East Asia using ecological niche modeling and phylogenetic analyses // Journal of Biogeography. Vol.38. P.439-452.
  • Goldberg E.E. & Land L. 2007. Species and dispersal barriers // American Naturalist. Vol.170. P.297-304.
  • Hardy O.J. & Vekemans X. 1999. Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models // Heredity. Vol.83. P.145-154.
  • Huelsenbeck J.P., Bull J.J. & Cunningham C.W. 1996. Combining data in phylogenetic analysis // Trends in Ecology & Evolution. Vol.11. P.152-157.
  • Irwin D.M., Kocher T.D. & Wilson A.C. 1991. Evolution of the cytochrome b gene of mammals // Journal of Molecular Evolution. Vol.32. P.128-144.
  • Johnson K.P., Adler F.R. & Cherry J.L. 2000. Genetic and phylogenetic consequences of island biogeography // Evolution. Vol.54. P.387-396.
  • Lomolino M.V., Riddle B.R., Whittaker R.J. & Brown J.H. 2010. Biogeography. Sunderland, MA: Sinauer Associates Inc. 878 p.
  • Lopez J.V., Culver M., Stephens C., Johnson W.E. & O'Brien S.J. 1997. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals // Molecular Biology & Evolution. Vol.14. P.277-286.
  • Mallet J. & Willmott K. 2003. Taxonomy: renaissance or Tower of Babel // Trends in Ecology & Evolution. Vol.18. P.57-59.
  • Patrick L.E., McCulloch E.S. & Ruedas L.A. 2013. Systematics and biogeography of the arcuate horseshoe bat species complex (Chiroptera, Rhinolophidae) // Zoologica Scripta. Vol.42. P.553-590.
  • Rossiter S.J., Jones G., Ransome R.D. & Barratt E.M. 2000. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum // Molecular Ecology. Vol.9. P.1131-1135.
  • Sakai T., Kikkawa Y., Tsuchiya K., Harada M., Kanoe M., Yoshiyuku M. & Yonekawa H. 2003. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequences of the mitochondrial cytochrome b gene // Genes & Genetic Systems. Vol.78. P.179-189.
  • Simmons N.B. 2005. Order Chiroptera // Wilson D.E. & Reeder D.M. (eds). Mammal Species of the World. A Taxonomic and Geographic Reference. Third edition. Baltimore: Johns Hopkins University Press. P.312-529.
  • Sunnucks P. 2000. Efficient genetic markers for population biology // Trends in Ecology & Evolution. Vol.15. P.199-203.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Molecular Biology & Evolution. Vol.28. P.2731-2739.
  • Woon P.H. 1967. [Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 7. Mammals]. Seoul: Samwha Publishing Co. P.301-306 [in Korean].
  • Wright S. 1943. Isolation by distance // Genetics. Vol.28. P.114-128.