Vocal activity and acoustic structure of the rutting calls of Siberian wapiti (Cervus elaphus sibiricus) and their imitation with a hunting luring instrument

Vocal activity and acoustic structure of the rutting calls of Siberian wapiti (Cervus elaphus sibiricus) and their imitation with a hunting luring instrument

Volodin I.A., Volodina E.V., Frey R., Maymanakova I.L.

P. 99-106

This study on Siberian wapiti (Cervus elaphus sibiricus) provides data on rutting vocal activity (bugles per hour), collected using four synchronized automated recording systems in natural habitats in the Western Sayan Mountains (Russia). Also, this study provides first comparison of naturally produced male bugles with their imitation using a traditional hunting technique of blowing into a hollow pipe with a mouthpiece. Stag vocal activity weakly negatively correlated to air temperature and ceased completely during three very cold days with snowfall. Stag bugles (n = 153) were high-pitched, with an average maximum fundamental frequency (f0) of 1.23±0.21 kHz, a minimum f0 of 0.29±0.05 kHz and a duration of 3.07±0.52 s. Hind alarm barks (n = 12) were significantly lower in maximum f0 = 0.93±0.08 kHz, significantly higher in minimum f0 = 0.34±0.06 kHz and much shorter (0.20±0.03 s) compared to male bugles. Male bugles were similar in the acoustic structure with their imitations, produced by a human using a luring wind instrument (n = 27), what provides a support to the hypothesis of forced airflow through a narrow, highly tensed larynx and vocal tract as a production mechanism of the extremely high-pitched bugles of wapiti.DOI: 10.15298/rusjtheriol.12.2.06

Литература
  • Blumstein D.T., Mennill D.J., Clemins P., Girod L., Yao K., Patricelli G., Deppe J.L., Krakauer A.H., Clark C., Cortopassi K.A., Hanser S.F., McCowan B., Ali A.M. & Kirscehl A.N.G. 2011. Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations, and prospectus // Journal of Applied Ecology. Vol.48. P.758-767.
  • Bocci A., Telford M. & Laiolo P. 2013. Determinants of the acoustic behaviour of red deer during breeding in a wild alpine population, and implications for species survey // Ethology, Ecology & Evolution. Vol.25. P.52-69.
  • Bowyer R.T. & Kitchen D.W. 1987. Sex and age-class differences in vocalizations of Roosevelt elk during rut // American Midland Naturalist. Vol.118. P.225-235.
  • Danilkin A.A. 1999. [Mammals of Russia and Neighboring Regions. Cervidae]. Moskva: GEOS. 552 p. [in Russian].
  • Fedosenko A.K. 1980. [The Maral (Ecology, Behaviour, Management)]. Alma-Ata: Nauka. 200 p. [in Russian].
  • Feighny J.J., Williamson K.E. & Clarke J.A. 2006. North American elk bugle vocalizations: male and female bugle call structure and context // Journal of Mammalogy. Vol.87. P.1072-1077.
  • Frey R. & Riede T. 2013. The anatomy of vocal divergence in North American elk and European red deer // Journal of Morphology. Vol.274. P.307-319.
  • Frey R., Volodin I., Volodina E., Carranza J. & Torres-Porras J. 2012. Vocal anatomy, tongue protrusion behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus hispanicus) // Journal of Anatomy. Vol.220. P.271-292.
  • Geist V. 1998. Deer of the world: their evolution, behavior and ecology. Mechanicsburg, Pennsylvania: Stackpole Books. 326 p.
  • Heptner V.G., Nasimovich A.A. & Bannikov A.G. 1961. [Mammals of the Soviet Union: Artiodactyla and Perissodactyla]. Vol.1. Moskva: Vishaya Shkola. 776 p. [in Russian].
  • Kidjo N., Cargnelutti B., Charlton B.D., Wilson C. & Reby D. 2008. Vocal behaviour in the endangered Corsican deer: description and phylogenetic implications // Bioacoustics. Vol.18. P.159-181.
  • Kuznetsova M.V., Danilkin A.A. & Kholodova M.V. 2012. [Phylogeography of red deer (Cervus elaphus): data of analysis of polymorphism of the mitochondrial gene for cytochrome b] // Izvestiya Rossiiskoi Akademii Nauk, Seriya Biologicheskaya. No.4. P.391-398 [in Russian].
  • Long A.M., Moore N.P. & Hayden T.J. 1998. Vocalizations in red deer (Cervus elaphus), sika deer (Cervus nippon), and red ? sika hybrids // Journal of Zoology. Vol.224. P.123-134.
  • Ludt C.J., Schroeder W., Rottmann O. & Kuehn R. 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus) // Molecular Phylogenetics and Evolution. Vol.31. P.1064-1083.
  • Mahmut H., Masuda R., Onuma M., Takahashi M., Nagata J., Suzuki M. & Ohtaishi N. 2002. Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: comparison with other Asian, European, and North American populations // Zoological Science. Vol.19. P.485-495.
  • Mennill D.J., Battiston M., Wilson D.R., Foote J.R. & Doucet S.M. 2012. Field test of an affordable, portable, wireless microphone array for spatial monitoring of animal ecology and behaviour // Methods in Ecology and Evolution. Vol.3. P.704-712.
  • Nikolski A.A. & Wallschlager D. 1983. Interspezifische Divergenz der Brunflaute beim Rothirsch (Cervus elaphus) // Zoologische Jahrbьcher, Physiologie. Bd.87. S.353-357.
  • Nikol'skii A.A. 1975. [Basic patterns of male Bactrian red deer (Cervus elaphus bactrianus) rutting calls] // Zoologicheskii Zhurnal. Vol.54. P.1897-1900 [in Russian].
  • Nikol'skii A.A. 1984. [Mammalian Acoustical Signals in Evolutionary Process]. Moskva: Nauka. 199 p. [in Russian].
  • Nikol'skii A.A. 2011. The effect of amplitude modulation on the spectrum structure of the red deer sound signal // Doklady Biological Sciences. Vol.437. P.107-109.
  • Nikol'skii A.A., Janina I.Yu. & Frommolt K.-H. 1987. Akustische Diagnostik der Unterartzugehorigkeit der Rothirsche (Cervus elaphus, Cervidae, Artiodactyla) Transbaikaliens // Zoologischer Anzeiger. Vol.219. P.25-32.
  • Nikol'skii A.A., Pereladova O.B., Rutovskaja M.V. & Formozov N.A. 1979. [The geographical variability of rut calls in red deer males] // Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii. Vol.84. No.6. P.46-55 [in Russian].
  • Passilongo D., Reby D., Carranza J. & Apollonio M. 2013. Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire // PLoS ONE. Vol.8. No.5. e63841. doi:10.1371/journal.pone.0063841.
  • Pereladova O.B. 1981. [Spatio-temporal dynamics of roaring by Caucasian and Bactrian red deer] // Naumov N.P. (ed.). [Ecology, Population Structure and Intra-Specific Communication Processes in Mammals]. Moskva: Nauka. P.182-244 [in Russian].
  • Reby D. & McComb K. 2003. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags // Animal Behaviour. Vol.65. P.519-530.
  • Riede T. & Titze I.R. 2008. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) - producing high fundamental frequency vocalization with a very long vocal fold // Journal of Experimental Biology. Vol.211. P.2144-2154.
  • Shtarev J.F. 1970. [Results of acclimatization of maral in the Republic of Mordovia] // Naumov S.P. (ed.). [Proceedings of the Mordovian Natural State Reserve, Issue 5]. Saransk: Mordovian Press. P.137-170 [in Russian].
  • Struhsaker T.T. 1968. The behavior of the elk (Cervus canadensis) during the rut // Zeitschrift für Tierpsychologie. Vol.24. P.80-114.
  • Tembrock G. 1965. Untersuchungen zur intraspezifischen Variabilitдt von LautдuЯerungen bei Sдugetieren // Zeitschrift fьr Sдugetierkunde. Bd.30. S.257-273.
  • Titze I.R. & Riede T. 2010. A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies // PLoS Computational Biology. Vol.6. No.8. e1000897. doi:10.1371/journal.pcbi.1000897.
  • Volodin I., Volodina E., Frey R., Carranza J. & Torres-Porras J. 2013. Spectrographic analysis points to source-filter coupling in rutting roars of Iberian red deer // Acta Ethologica. Vol.16. P.57-63.